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Challenges 

RoCoSDF: Row-Column neural Signed Distance Function

(a) Row-Column Neural SDFs Prediction

𝑆𝐷𝐹!"(𝐱) = 𝑓!"(𝐱)

𝑆𝐷𝐹#"(𝐱) = 𝑓#"(𝐱)

Ø Multi-view ultrasound scanning provides:

• Complex anatomical shapes.

• Comprehensive spatial understanding.

• Complementary directional information.

Ø Implicit neural representation:

• Resolution-agnostic.

• Memory-efficient.

• Continuous representation.

q Shape reconstruction: 

 > Point-based: non-uniform.

>> Volume-based: poor geometry.

 >>> Surface-based: limited view.

q Freehand 3D ultrasound (US) imaging: 

1) View-dependent issue. 

2) Elevational thickness issue.

3) Discrete voxel resolution.
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Neural SDF. An MLP (𝑓$(𝐱)) neural network can be trained as an SDF to map 

any 3D point to its corresponding SDF value. The surface 𝒮 can be represented 

by the zero-level-set of neural SDFs, 𝑓$ · = 0. 

(a) Row-Column

SDFs Prediction
(b) SDFs Fusion (c) SDF Sampling & Refinement (d) 3D Mesh
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• Separately encode the shape from each view.

• Implicitly fuse a distance field from multile views.

• Without requiring ground truth shape supervision. ✓ Self-supervised learning

✓ High-quality geometry

✓ Decoupled views 

(b) SDFs Fusion

Constructive Solid Geometry (CSG).  Adopt intersection boolean operation.

Intersection	𝑓!" 	∩ 	𝑓#" ∶ 	𝑆𝐷𝐹!"#" 	= 	max(𝑆𝐷𝐹!", 𝑆𝐷𝐹#")	

(c) SDF Sampling & Refinement

SDF Sampler. 1) Directly sample query points and SDF values using 𝑆𝐷𝐹!"#". 

2) Sample more aggressively near the zero-level-set of 𝑆𝐷𝐹!"#".

Row-Column Neural SDFs. Two MLPs neural networks are utilized to predict 

the row-column neural SDFs for row-scan and column-scan, respectively.

Experimental Setup

Model Training

A total of 24 scans and 12 shapes are collected from:

1)  Two transducers in configuration of freehand 3D US imaging.

2)  Six computer-aided designed (CAD) vertebra phantoms.

• We present RoCoSDF, a novel neural-SDF-based framework for multi-view 

freehand 3D US shape reconstruction from row-column scanned data. 

• A coarse-to-fine optimization strategy is designed to solve the view-dependent 

issue and elevational thickness issue with additional surface regularizers.

■ Applications: Medical augmented reality. US-guided surgical navigation.

* CD: Chamfer Distance;  HD: Hausdorff Distance; MAD: Mean Absolute Distance; RMSE: Root Mean Square Error

Qualitative Results

Quantitative Results
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Transducer Methods CD (mm) HD (mm) MAD (mm) RMSE (mm)

UNSR [4] (Row) 2.16 ± 0.16 5.21 ± 1.77 1.84 ± 0.14 2.25 ± 0.17

UT1 UNSR [4] (Col) 2.11 ± 0.18 5.82 ± 0.80 1.78 ± 0.17 2.25 ± 0.21

RoCoSDF(Ours) 𝟏. 𝟕𝟓 ± 𝟎. 𝟎𝟗 𝟒. 𝟎𝟖 ± 𝟎. 𝟕𝟒 𝟏. 𝟑𝟒 ± 𝟎. 𝟎𝟓 𝟏. 𝟕𝟎 ± 𝟎. 𝟎𝟑

UNSR [4] (Row) 2.40 ± 0.62 5.22 ± 2.47 1.97 ± 0.67 2.39 ± 0.86

UT2 UNSR [4] (Col) 2.54 ± 0.63 7.53 ± 2.45 2.25 ± 0.69 2.97 ± 0.95

RoCoSDF(Ours) 𝟐. 𝟎𝟑 ± 𝟎. 𝟑𝟔 𝟒. 𝟖𝟕 ± 𝟐. 𝟖𝟎 𝟏. 𝟓𝟑 ± 𝟎. 𝟒𝟕 𝟏. 𝟗𝟐 ± 𝟎. 𝟕𝟒

• For row-scan, ~25% MAD and 22% RMSE reduction over UNSR (p < 0.01).

• For col-scan, ~29% MAD and 30% RMSE reduction over UNSR (p < 0.01).
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The networks are trained using two learning strategies:

 1) 𝑓!" and 𝑓#" are trained by a series of self-supervised loss functions with an

non-manifold regularizer, since there are no ground truth SDFs available.

2) 𝑓";< is trained by a supervised loss with an manifold regularizer. 𝑆𝐷𝐹!"#"	is   

    used as pseudo ground truth for the supervision. For more detailed definition of    

    loss functions, please refer to our full paper. 

Contact: chenhb@shanghaitech.edu.cn; zhengrui@shanghaitech.edu.cn

Table 1. Performance comparison of our approach with the baseline on two datasets.
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Refinement. Train a third MLP 𝑓";< to optimize the fused SDF field.

Shape of Airplane Shape reconstruction is essential for US imaging, as the US signal cannot penetrate hard tissue boundaries!
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Self-supervised Learning


